Part Number Hot Search : 
CDR31BP TDA3654 1N4983US LU4S041 SM6135 DS2502Y 1908X257 202165B
Product Description
Full Text Search
 

To Download AMMC-5040 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 AMMC-5040
Data Sheet
20 - 45 GHz GaAs Amplifier
Description The AMMC-5040 is a high gain broadband amplifier designed for both military applications and commercial communication systems. This four-stage amplifier has input and output matching circuitry for use in 50 ohm environments. It is fabricated using PHEMT integrated circuit structures that provide exceptional broadband performance. The backside of this chip is both RF and DC ground. This simplifies the assembly process and reduces assembly related performance variations and costs. For improved reliability and moisture protection, the die is passivated at the active areas. This MMIC is a cost effective alternative to hybrid (discrete-FET) amplifiers that require complex tuning and assembly process.
Features * Frequency range: 20 - 45 GHz * High gain: 25 dB * Gain flatness: 1.5 dB * Return loss: Input: 17 dB, Output: 11 dB * Output power: P-1dB = 21 dBm at 38 GHz P-3dB = 22.5 dBm at 38 GHz Applications * Broadband gain block * Broadband driver amplifier * Point-to-point radio * LMDS * EW * Instrumentation * Frequency Multiplier (X2 and X3)
Chip Size: Chip Thickness: Pad Dimensions:
1720 x 760 m (67.7 x 29.9 mils) 100 10 m (4 0.4 mils) 75 x 75 m (3 0.4 mils)
Chip Size Tolerance: 10 m (0.4 mils)
Absolute Maximum Ratings [1]
Symbol
VD1,2-3-4 VG1,2-3-4 IDD Pin Tch Tb Tstg Tmax
Parameters/Conditions
Drain Voltage Gate Voltage Total Drain Current CW Input Power Operating Channel Temperature Operating Backside Temperature Storage Temperature
Units
V V mA dBm C C C
Min.
-3.0
Max.
5 0.5 550 21 +160
-55 -65
+75 +165 +300
Max. Assembly Temp (60 sec max) C
Notes: 1. Operation in excess of any one of these conditions may result in permanent damage to this device.
AMMC-5040 DC Specifications/Physical Properties[1]
Symbol
VD1,2-3-4 ID1 ID2-3-4 VG1,2-3-4 VP ch-b
Parameters and Test Conditions
Drain Supply Operating Voltage First Stage Drain Supply Current (VDD = 4.5 V, VG1 = -0.5 V) Total Drain Supply Current for Stages 2, 3 and 4 (VDD = 4.5 V, VGG= -0.5 V) Gate Supply Operating Voltages (IDD = 300 mA) Pinch-off Voltage (VDD = 4.5 V, IDD < 10 mA) Thermal Resistance[2] (Backside Temp. Tb = 25C)
Units
V mA mA V V C/W
Min.
2
Typ.
4.5 50 225 -0.45 -1.5 49
Max.
5
Notes: 1. Measured in wafer form with Tchuck = 25C (except ch-bs.) 2. Channel-to-backside Thermal Resistance (ch-b) = 58C/W at Tchannel (Tc) = 150C as measured using the liquid crystal method. Thermal Resistance at backside temperature (Tb) = 25C calculated from measured data.
RF Specifications[3,4] (VDD = 4.5V, IDD (Q) = 300 mA, Z0 = 50) Units GHz
dB dB dB dB dBm 15 8
Symbol
|S21| RLin RLout P-1dB P-3dB OIP3 |S12|2
2
Parameters and Test Conditions
Small-signal Gain Small-signal Gain Flatness Input Return Loss Output Return Loss Output Power @ 1 dB Gain Compression f = 22 GHz Output 3rd Order Intercept Point, f = 2 MHz, Pin = -8 dBm, f = 22 GHz Isolation
Broadband 3- 40 Min. Typ.
20 25 1.5 17 11 19.5 21 30 40 55
Narrow Band Typical Performance 1-4 7-9 37-40 40-45 Typical
25.5 0.2 17 10 20 21.6 29 55 25 0.4 18 14 22.5 23.5 29 55 22.4 0.2 21 13 21 22.5 31 55 21.3 1.2 17 13 20 21.5 27 55
|S21|2
Output Power @ 3 dB Gain Compression, f = 22 GHz dBm dBm dB
Notes: 3. Data measured in wafer form, Tchuck = 25C. 4. 100% on-wafer RF test is done at frequency = 24, 27, 29, 37 and 40 GHz, except as noted.
AMMC-5040 Typical Performance (Tchuck = 25C)
30 35 30 RETURN LOSS (dB) 25 GAIN (dB) 22 GAIN (dB) 20 15 10 14 5 25 30 35 40 45 0 20 25 30 35
3V 3.5V 4V 4.5V 5V
0
S11(dB) S22(dB)
26
-5
-10
18
-15
-20
10 20
40
45
-25 20
25
30
35
40
45
FREQUENCY (GHz)
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 1. Gain, VDD =4.5 V, IDD =300 mA.
Figure 2. Gain and Drain Voltage, IDD =300 mA.
35 30 25 GAIN (dB) 20 15 10 5 45 0 20 25
Figure 3. Input and Output Return Loss, VDD =4.5V, IDD =300 mA.
0 -5 -10 -15 -20 -25 -30 20
3.5V 4V 4.5V 5V
30 25 20 GAIN (dB) 15 10 5 0 20
3.5V 4V 4.5V 5V
150mA 200mA 250mA 300mA 350mA 400mA
25
30
35
40
INPUT RETURN LOSS (dB)
30
35
40
45
25
30
35
40
45
FREQUENCY (GHz)
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 4. Gain and Drain Voltage, IDD =350 mA.
Figure 5. Gain and Drain Voltage, IDD =4.5V.
Figure 6. Input Return Loss and Drain Voltage, IDD =350 mA.
3
AMMC-5040 Typical Performance (Tchuck = 25C)
0
3.5V 4V 4.5V 5V
25
26
OUTPUT RETURN LOSS (dB)
P1dB & P3dB (dBm)
-5
20 P1dB (dBm)
24
22
-10
15
20
-15
10
100mA 200mA 300mA 350mA
18
P-1dB P-3dB
-20 20
25
30
35
40
45
5 20
25
30
35
40
45
16 20
25
30
35
40
45
FREQUENCY (GHz)
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 7. Output Return Loss and Drain Voltage, IDD =350 mA.
15
Figure 8. Output Power (P-1dB) and Drain Current, VDD =4.5V.
25
Figure 9. Output Power at P-1dB and P-3dB, VDD =4.5V, IDD =300 mA.
35
13 P1dB (dBm)
23
30
9
19
3.5V 4V 4.5V 5V
IP3 (dBm) 25 30 35 40 45
NF (dB)
11
21
25
20
7
17
15
5 20
25
30
35
40
45
15 20
10 20
25
30
35
40
45
FREQUENCY (GHz)
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 10. Noise Figure, VDD =4.5V, IDD =300 mA.
Figure 11. Output Power (P-1dB) and Drain Voltage, IDD =300 mA.
Figure 12. Output 3rd Order Intercept Point, VDD =4.5V, IDD =300 mA.
4
AMMC-5040 RF Performance for Frequency Multiplier Applications
Typical Performance as a X Frequency Multiplier, Input Power Optimized for Conversion Gain [1]
Input Frequency (GHz) 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Input Power (dBm) 6 6 6.5 6.5 7.5 7.5 7.5 7.5 7 7 3 5 5 5 Output Frequency (GHz) 20 22 24 26 28 30 32 34 36 38 40 42 44 46 Output Power (dBm) 18.2 18.9 20.5 20.8 20.0 19.6 18.0 16.0 11.7 7.1 7.0 10.7 11.3 11.7 Conversion Gain (dB) 12.2 12.9 14.0 14.3 12.4 12.1 10.5 8.5 4.7 0.1 4.0 5.7 6.3 6.7
Typical Performance as a X Frequency Multiplier, Input Power Optimized for Output Power [1]
Input Frequency (GHz) 10 11 12 13 14 15 16 Input Power (dBm) 10 10 10 9.5 9.5 9.5 9.5 Output Frequency (GHz) 20 22 24 26 28 30 32 Output Power (dBm) 20.2 20.9 22.0 22.2 20.8 20.6 19.0 Conversion Gain (dB) 10.2 10.9 12.0 12.7 11.3 11.1 9.5
Typical Performance as a X3 Frequency Multiplier [1]
Input Frequency (GHz) 7 8 9 10 11 12 13 14 Input Power (dBm) 14.3 14.2 15.1 15.9 15.8 15.8 15.7 15.6 Output Frequency (GHz) 21 24 27 30 33 36 39 42 Output Power (dBm) 19.6 20.6 20.0 18.6 16.0 14.7 12.9 10.0 Conversion Gain (dB) 5.3 6.4 4.9 2.6 0.2 -1.0 -2.7 -5.5
Note: 1. T = 25C. Refer to "Multiplier Biasing and Operation" section for bias conditions for operation as a multiplier.
5
AMMC-5040 Typical Scattering Parameters[1] (Tchuck = 25C, VDD = 4.5V, IDD = 300 mA, Z in = Zout = 50)
Freq. GHz
2.045 3.045 4.045 5.045 6.045 7.045 8.045 9.045 10.045 11.045 12.045 13.045 14.045 15.045 16.045 17.045 18.045 19.045 20.045 21.045 22.045 23.045 24.045 25.045 26.045 27.045 28.045 29.045 30.045 31.045 32.045 33.045 34.045 35.045 36.045 37.045 38.045 39.045 40.045 41.045 42.045 43.045 44.045 45.045 46.045 47.045 48.045 49.045 50.000
dB
-15.17 -15.12 -16.33 -15.91 -15.32 -15.04 -15.02 -15.06 -15.13 -15.19 -15.24 -15.31 -15.36 -15.47 -15.59 -15.74 -15.93 -16.31 -16.82 -17.28 -18.39 -19.92 -20.37 -20.61 -20.03 -18.87 -17.38 -17.55 -18.15 -18.91 -20.15 -21.06 -22.94 -24.74 -27.27 -24.62 -22.97 -22.55 -22.63 -24.00 -25.45 -27.06 -25.94 -22.48 -20.26 -15.70 -11.42 -7.83 -4.72
S11 Mag
0.174 0.175 0.153 0.160 0.171 0.177 0.177 0.177 0.175 0.174 0.173 0.172 0.171 0.168 0.166 0.163 0.160 0.153 0.141 0.137 0.120 0.101 0.096 0.093 0.100 0.114 0.135 0.133 0.124 0.113 0.098 0.088 0.071 0.058 0.043 0.059 0.071 0.075 0.074 0.063 0.053 0.044 0.050 0.075 0.097 0.164 0.269 0.406 0.581
Ang
-11 -21 -23 -23 -28 -36 -44 -51 -57 -64 -71 -79 -86 -94 -103 -111 -120 -129 -138 -149 -156 -159 -160 -160 -160 -156 -168 174 164 155 148 140 144 143 160 176 178 168 167 164 168 -171 -139 -123 -112 -103 -106 -113 -124
dB
-24.59 -12.70 -7.42 -23.80 -20.96 -22.62 -32.63 -37.54 -40.69 -34.93 -21.52 -12.30 -4.87 1.65 7.60 13.18 18.42 22.92 25.67 26.62 26.58 26.44 26.48 26.46 26.43 25.97 25.38 24.53 23.74 23.17 22.75 22.45 22.15 22.16 22.51 22.99 23.23 22.94 22.33 21.78 21.48 21.17 20.75 20.32 19.51 19.00 18.44 17.70 16.85
S1 Mag
0.059 0.232 0.425 0.065 0.090 0.074 0.023 0.013 0.009 0.018 0.084 0.243 0.571 1.209 2.399 4.562 8.337 14.001 19.201 21.432 21.318 20.994 21.078 21.031 20.964 19.873 18.579 16.837 15.384 14.407 13.721 13.260 12.814 12.819 13.343 14.110 14.505 14.022 13.075 12.275 11.861 11.442 10.907 10.371 9.453 8.917 8.355 7.677 6.955
Ang
130 5 -146 89 104 23 0 19 6 -113 -154 176 146 115 82 45 3 -46 -101 -153 163 125 90 56 22 -11 -43 -72 -99 -124 -148 -174 164 141 117 90 61 31 3 -23 -50 -78 -107 -136 -166 165 134 101 69
dB
0.00 -119.33 -79.88 -79.88 -80.00 -80.00 -80.00 -79.72 -70.46 -70.46 -68.05 -67.96 -63.04 -60.92 -60.05 -60.80 -59.94 -59.17 -58.42 -56.52 -56.43 -54.46 -54.90 -54.81 -55.44 -54.43 -56.89 -59.51 -66.02 -63.24 -62.96 -58.42 -62.23 -56.92 -54.15 -56.75 -54.49 -53.44 -51.15 -52.29 -51.10 -51.37 -51.37 -51.99 -49.59 -50.75 -53.08 -54.51 -54.43
S1 Mag
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.003 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002
Ang
-94 -1 -156 0 -62 -75 -5 -73 -109 -127 -148 -139 -147 178 170 168 148 142 142 131 129 110 101 93 73 67 54 27 39 85 92 91 120 109 85 78 73 86 68 63 54 45 43 41 22 18 17 6 13
dB
-0.77 -1.30 -2.55 -2.26 -2.66 -2.93 -2.91 -3.10 -3.31 -3.56 -3.79 -3.97 -4.27 -4.55 -4.80 -5.01 -5.25 -5.87 -7.80 -10.92 -13.81 -16.17 -18.24 -20.03 -20.25 -17.79 -15.30 -13.65 -12.32 -11.70 -11.40 -11.95 -12.75 -13.59 -13.86 -13.87 -14.15 -15.02 -15.50 -15.82 -14.49 -12.76 -11.21 -9.70 -8.14 -7.25 -6.43 -5.73 -5.20
S Mag
0.915 0.861 0.746 0.771 0.736 0.714 0.715 0.700 0.683 0.664 0.647 0.633 0.612 0.592 0.575 0.562 0.546 0.509 0.407 0.284 0.204 0.155 0.122 0.100 0.097 0.129 0.172 0.208 0.242 0.260 0.269 0.253 0.231 0.209 0.203 0.203 0.196 0.177 0.168 0.162 0.189 0.230 0.275 0.327 0.392 0.434 0.477 0.517 0.550
Ang
-28 -40 -51 -54 -65 -72 -81 -92 -102 -112 -123 -135 -148 -162 -178 162 135 98 51 4 -35 -63 -80 -81 -74 -67 -73 -84 -98 -113 -127 -144 -155 -163 -170 177 162 146 131 117 104 84 63 44 24 7 -8 -22 -34
Note: 1. Data obtained from on-wafer measurements.
AMMC-5040 Typical Scattering Parameters[1] (Tchuck = 25C, VDD = 4.5V, IDD = 350 mA, Z in = Zout = 50)
Freq. GHz
17.045 18.045 19.045 20.045 21.045 22.045 23.045 24.045 25.045 26.045 27.045 28.045 29.045 30.045 31.045 32.045 33.045 34.045 35.045 36.045 37.045 38.045 39.045 40.045 41.045 42.045 43.045 44.045 45.045 46.045 47.045 48.045 49.045 50.000
dB
-15.90 -16.10 -16.50 -17.08 -17.41 -18.78 -20.82 -21.45 -21.92 -21.45 -20.21 -18.06 -17.86 -18.39 -19.04 -20.32 -21.10 -23.60 -25.31 -30.41 -27.92 -25.80 -24.94 -25.03 -26.05 -27.13 -29.59 -29.99 -26.40 -24.89 -18.50 -13.21 -9.10 -5.48
S11 Mag
0.160 0.157 0.150 0.140 0.135 0.115 0.091 0.085 0.080 0.085 0.098 0.125 0.128 0.120 0.112 0.096 0.088 0.066 0.054 0.030 0.040 0.051 0.057 0.056 0.050 0.044 0.033 0.032 0.048 0.057 0.119 0.219 0.351 0.532
Ang
-111 -120 -129 -138 -149 -156 -159 -160 -160 -160 -156 -168 174 164 155 148 140 144 143 160 176 178 168 167 164 168 -171 -139 -123 -112 -103 -106 -113 -124
dB
13.73 19.07 23.92 27.37 28.96 29.01 28.73 28.65 28.56 28.55 28.13 27.69 26.95 26.21 25.65 25.17 24.88 24.53 24.49 24.81 25.38 25.75 25.56 25.03 24.59 24.45 24.29 24.07 23.89 23.32 23.14 22.81 22.15 21.30
S1 Mag
4.857 8.981 15.696 23.362 28.054 28.221 27.316 27.069 26.789 26.759 25.497 24.224 22.266 20.450 19.164 18.142 17.541 16.846 16.767 17.394 18.567 19.376 18.956 17.850 16.970 16.696 16.386 15.984 15.652 14.648 14.361 13.814 12.804 11.608
Ang
45 3 -46 -101 -153 163 125 90 56 22 -11 -43 -72 -99 -124 -148 -174 164 141 117 90 61 31 3 -23 -50 -78 -107 -136 -166 165 134 101 69
dB
-61.03 -59.90 -59.17 -59.17 -57.08 -56.48 -54.47 -54.94 -54.94 -55.35 -54.46 -57.03 -58.31 -67.65 -63.27 -63.18 -59.22 -62.19 -57.76 -54.43 -57.60 -55.00 -54.00 -51.42 -52.75 -51.37 -51.37 -51.39 -52.38 -49.39 -50.47 -52.77 -53.15 -55.92
S1 Mag
0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.003 0.002 0.003 0.003 0.003 0.002 0.003 0.003 0.002 0.002 0.002
Ang
168 148 142 142 131 129 110 101 93 73 67 54 27 39 85 92 91 120 109 85 78 73 86 68 63 54 45 43 41 22 18 17 6 13
dB
-4.89 -4.99 -5.06 -6.08 -8.51 -11.29 -13.84 -16.02 -18.15 -19.22 -17.68 -15.15 -13.32 -11.78 -11.03 -10.68 -11.06 -11.85 -12.74 -13.14 -13.17 -13.64 -14.93 -15.86 -16.32 -14.81 -13.01 -11.47 -9.86 -7.99 -7.07 -6.17 -5.41 -4.88
S Mag
0.569 0.565 0.558 0.496 0.375 0.273 0.203 0.158 0.124 0.109 0.131 0.175 0.216 0.258 0.281 0.293 0.280 0.256 0.231 0.220 0.220 0.208 0.179 0.161 0.153 0.182 0.224 0.267 0.322 0.398 0.443 0.492 0.537 0.570
Ang
162 135 98 51 4 -35 -63 -80 -81 -74 -67 -73 -84 -98 -113 -127 -144 -155 -163 -170 177 162 146 131 117 104 84 63 44 24 7 -8 -22 -34
Note: 1. Data obtained from on-wafer measurements.
7
Biasing and Operation The recommended DC bias condition for the AMMC-5040 is with all four drains connected to a single 4.5V supply and all four gates connected to an adjustable negative voltage supply as shown in Figure 15. The gate voltage is adjusted for a total drain supply current of typically 300 mA. Figures 1-12 can be used to help estimate the minimum drain voltage and current necessary for a given RF gain and output power. As shown in Figure 13, the second, third, and fourth stage DC drain bias lines are connected internally and therefore require only a single bond wire. An additional bond wire is needed for the first stage DC drain bias, Vd1. Only the third and fourth stage DC gate bias lines are connected internally. A total of three DC gate bond wires are required: one for Vg1, one for Vg2, and one for the Vg3/Vg4 connection. The internal matching circuitry at the RF input creates a 50-ohm DC and RF path to ground. A blocking capacitor should be used at the RF input. Any DC voltage applied to the RF input must be maintained below 1V. The RF output is AC coupled. No ground bond wires are needed since the ground connection is made by means of plated through via holes to the backside of the chip. Frequency Multiplier Biasing and Operation The AMMC-5040 can also be used as a frequency doubler, tripler or quadrupler. As a f re q u e n c y d o u b l e r, t h e AM M C - 5 0 4 0 p ro vides conversion gain for input signals in the 10-23 GHz frequency range for output frequencies of 20-46 GHz. Similarly, 5-10 GHz signals can be quadrupled up to 20-40 GHz with some conversion loss. Optimum conversion efficiency as a doubler is obtained with an input power level of 3-8 dBm. For use as a frequency tripler, an input power level of 14-16 dBm is recommended. Frequency multiplication is achieved by reducing the bias on the first stage FET to efficiently generate harmonics. The remaining three stages are then used to provide amplification. While many bias schemes may be used to generate and amplify the desired harmonics within the AMMC-5040, the following information is suggested as a starting point for multiplier applications. Frequency doubling or quadrupling (generation of even harmonics) is accomplished by biasing the first stage FET at pinch-off by setting Vg1 = Vp -1.1 volts. The remaining three stages are biased for normal amplification, e.g., Vgg is adjusted such that Id2 + Id3 + Id4 250 mA. The drain voltage, Vdd, for all four stages should be 3.5 - 4.5 volts. The assembly diagram shown in Figure 16 can be used as a guideline. To operate the AMMC-5040 as a frequency tripler (odd harmonic), the device is biased as shown in Figure 17. The drain voltage for the first stage FET is biased separately with Vd1 reduced to 1.1 - 1.2 volts. The drain voltage for the remaining three stages, Vd2, Vd3, and Vd4, should be 3.5 - 4.5 volts. All four gate voltages, Vgg, are set to approximately -0.6 volts. If desired, Vgg can be adjusted to minimize second harmonics. Improved multiplier performance can be obtained by biasing both the gate and drain voltages for the first stage separately from stages 2-4. In all cases, Cb > 100 nF to assure stability. Assembly Techniques The chip should be attached directly to the ground plane using either a fluxless AuSn solder preform or electrically conductive epoxy[1]. For conductive epoxy, the amount should be just enough to provide a thin fillet around the bottom perimeter of the die. The ground plane should be free of any residue that may jeopardize electrical or mechanical attachment. Caution should be taken to not exceed the Absolute Maximum Rating for assembly temperature and time. Thermosonic wedge bonding is the preferred method for wire attachment to the bond pads. The RF connections should be kept as short as possible to minimize inductance. Gold mesh [2] or double-bonding with 0.7 mil gold wire is recommended. Mesh can be attached using a 2 mil round tracking tool and a tool force of approximately 22 grams with an ultrasonic power of roughly 55 dB for a duration of 76 8 mS. A guided wedge at an ultrasonic power level of 64 dB can be used for the 0.7 mil wire. The recommended wire bond stage temperature is 150 2C. The chip is 100 mm thick and should be handled with care. This MMIC has exposed air bridges on the top surface. Handle at edges or with a custom collet (do not pick up die with vacuum on die center.) This MMIC is also static sensitive and ESD handling precautions should be taken. For more information, see Avago Application Note 54 "GaAs MMIC ESD, Die Attach and Bonding Guidelines."
Notes: 1. Ablebond 84-1 LM1 silver epoxy is recommended. 2. Buckbee-Mears Corporation, St. Paul, MN, 800-262-3824
Vd1
Vg2
Vd2
Vd3
Vd4
IN
Matching Matching Matching Matching
Matching
OUT
Vg1 Figure 13. AMMC-5040 Simplified Schematic Diagram.
Vg3
Vg4
1174.5 m 54.0 m 426.5 m
80.5 m
480 m
80.5 m
278.5 m
517 m
1342 m
Figure 14. AMMC-5040 Bonding Pad Locations (dimensions in microns).
9
301.5 m
1720 m
780 m
Figure 15. AMMC-5040 assembly for normal amplifier applications with single drain and single gate supply connections.
Figure 1. Separate first-stage gate bias for using the AMMC-5040 as a frequency doubler or quadrupler. This diagram also shows an option to the Vg jumper bonding scheme used in Figure 15.
Figure 17. Separate first-stage gate and drain bias for using the AMMC-5040 as a frequency tripler.
Ordering Information AMMC-5040-W10 = 10 devices per tray AMMC-5040-W50 = 50 devices per tray
For product information and a complete list of distributors, please go to our web site:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright (c) 2006 Avago Technologies, Limited. All rights reserved. Obsoletes 5989-4041EN AV01-0605EN - October 26, 2006


▲Up To Search▲   

 
Price & Availability of AMMC-5040

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X